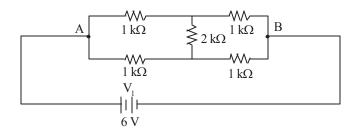

Instructions:

- (i) Each question carries *one* mark.
- (ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with blue/black ball point pen the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

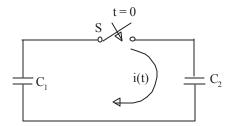
1. Consider an RC LPF as shown below


If V_i(t) is a sinusoidal signal of frequency 1 kHz, then V_o(t)

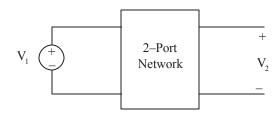
(1) Leads $V_i(t)$ by 90°

(2) Lags behind V_i(t) by 45°

(3) Is in phase with $V_i(t)$


- (4) Lags behind $V_i(t)$ by 30°
- 2. The current through the 2 k Ω resistance in the circuit shown below is
 - (1) 0 mA
- (2) 1 mA
- (3) 2 mA
- (4) 6 mA

IS 2016 D 1 J



3. In the following figure, C_1 and C_2 are ideal capacitors. C_1 has been charged to 12V before the ideal switch S is closed at t=0. The current i(t) for all t is

(1) zero

- (2) a step function
- (3) an exponentially decaying function
- (4) an impulse function
- 4. Consider a Two Port Network as shown below

If the network is described in terms of its z-parameters, with Port-2 open $G_{12} = V_2/V_1$ is

 $(1) - z_{21}/z_{11}$

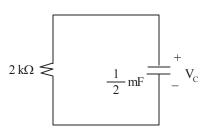
(2) z_{21}/z_{11}

 $(3) - z_{12}/z_{11}$

- (4) z_{12}/z_{11}
- 5. Which one of the following parameters doesn't exist for the two-port network shown in the given figure

- (1) ABCD
- (2) Y
- (3) H
- (4) Z

- 6. For a 2-port symmetrical bilateral network, if transmission parameters $A = 3 \Omega$ and $B = 1 \Omega$, the value of parameter C is
 - (1) 3Ω


- (2) 8Ω
- (3) 10Ω
- (4) 9Ω
- 7. A computer has the following negative numbes stored in binary form as shown. The wrongly stored number is
 - (1) -37 as 11011011

(2) - 89 as 10100111

(3) - 48 as 11101000

- (4) -32 as 11100000
- 8. A lossless transmission line operating at 4.5 GHz has $L = 2.5 \mu$ H/m and $z_0 = 75 \Omega$. The corresponding phase velocity is
 - (1) 135 Km/s
- (2) 30 Mm/s
- (3) 150 Km/s
- (4) 41.6 Mm/s

9. In the following RC circuit, $V_C(0) = 10 \text{ V}$.

Then, $V_{C}(t)$ is

(1) e^{-t}

- (2) $5e^{-t}$
- (3) $10e^{-t}$
- (4) $10 + e^{-t}$

- 10. The radiation resistance of any antenna should be always
 - (1) As low as possible
 - (2) As high as possible
 - (3) Should be high for receiving antennas and low for transmitting antennas
 - (4) Should be low for receiving antennas and high for transmitting antennas

11. Match List-I(Laws) with List-II(Applications) and select the correct answer.

List-I

A. Ampere's law

- В Biot's law
- Coulomb's law
- D. Gauss's law
- \mathbf{C} Α В
- D d h a
- (1) c (2) d c b a
- (3) d b c
- d
- (4) c

List-II

To find the

- a. Force on a charge
- Force due to a current carrying conductor b.
- Electric flux density at a point c.
- d. Magnetic flux density at a point

- 12. Which of the following statements holds for the divergence of electric and magnetic flux densities?
 - (1) Both are zero
 - (2) These are zero for static densities but non zero for time varying densities
 - (3) It is zero for the electric flux density
 - (4) It is zero for the magnetic flux density
- **13.** Directivity of antenna with normalized radiation intensity

$$u(0, 4) = \sin \theta \le \theta \le \frac{\pi}{2}$$

- $\theta \le \phi \le 2\pi$ will be
- (1) 1.546
- (2) 2.546
- (3) 3.546
- (4) 4.446

14. Which one of the following statements is correct?

Short circuited stubs are preferred to open circuited stubs because the latter are

- (1) More difficult to make and connect
- (2) Made of a transmission line with a different characteristic impedance
- (3) Liable to radiate energy
- (4) Incapable of giving a full range of frequencies
- 15. What is the directivity of antenna whose normalized intensity is $\mu(\theta, \phi) = \cos(\theta)$, $0 \le \theta \le \pi/2$, $\theta \leq \phi \leq 2\pi$?
 - (1) 1

- (2) 2
- (3) 3
- (4) 4

16.	A digital TDM system multiplexes 24 voice signals. Each signal is sampled at a rate of 8 kHz and each sample is represented by an 8 bit word. In each rotation, if the multiplexer makes contact with all the signals, the number of bits/rotation at the output of the multiplexer is											
	(1)	64	(2)	192	(3)	24	(4)	1536				
17.	Wh	ich capacitor stor	es a highe	r amount	of energy?							
	(1)	Air capacitor			(2)	Paper cap	pacitor					
	(3)	Mica capacitor			(4)	Plastic film	n capacitor re	esistor				
18.	The	colour code on a	carbon resi	stor is red-	red-black-silv	er. The val	ue of this res	istor is				
	(1)	22000 Ohms			(2)	2200 Ohn	ns					
	(3)	22 ± 5 % Ohms			(4)	22 ±10%	Ohms					
19.	Whi	ch of the following	g statement	s is correct								
	(1) Thermistors have positive temperature coefficient only											
	(2) Varistors have negative voltage coefficients only											
	(3) Both varistors and thermistors are linear resistors											
	(4) Both varistors and thermistors are temperatuare independent											
20.	If th	e resistance of a m	aterial falls	with incre	asing tempera	ture it is sai	d to have					
	(1)	Negative tempera	ature coeffi	cient	(2)	Positive to	emperature co	efficient				
	(3)	Zero temperature	coefficien	t	(4)	Independe	ent of resistar	nce				
21.	Mat	erials which can s	tore electric	cal energy a	are called							
	(1)	Magnetic materia	ıls		(2)	Semi con	ductors					
	(3)	Dielectric materia	ıls		(4)	Super cor	nductors					
22.		frequency respor				amplifiers o	can be booste	d by using				
	(1)	Resistors, Resist	ors		(2)	Coils, Ca	pacitors					
	(3)	Capacitors, Coils	3		(4)	Transform	ners, Transfor	mers				

IS 2016 D 5 J

23.	The	temperature beyond	which su	abstances lose	their pern	nanent magnetic	propert	ies is known as			
	(1)	Critical temperature			(2)	Curie temperat	ure				
	(3)	Inversion temperatu	re		(4)	Conversion ter	nperatu	re			
24.	The	property of material 1	by which	n it can be rolle	ed into she	eets is called					
	(1)	Plasticity	(2)	Elasticity	(3)	Malleability	(4)	Ductility			
25.	Am	ong these which has h	nighest d	ielectric consta	ant ?						
	(1)	Polysterene	(2)	Mica	(3)	Cotton	(4)	Transformer oil			
26.	Mag	Magnetically saturated ferrite									
	(1) causes large hysteresis										
	(2)	produces low eddy	current								
	(3)										
	(4)	interacts with electro	omagnet	ic waves							
27.	Afte	After curie temperature									
	(1) Ferrimagnetic becomes paramagnetic material										
	(2) Paramagnetic becomes ferrimagnetic material										
	(3)	Paramagnetic mater	ial becor	nes antiferro n	nagnetic						
	(4)	Ferromagnetic become	mes anti	ferro magnetic	material						
28.		Silicon, at T = 300 K rinsic carrier concentr		1			trons is	5×10^4 /cm ³ . If the			
	(1)	$4.5 \times 10^{15} \text{/cm}^3$	(2)	$0.3 \times 10^{16}/\text{cm}$	m^3 (3)	$4.5\times10^6/\text{cm}^3$	(4)	0.3×10^6 /cm ³			
29 .		ample of Silicon at T enic at a concentration		-			of 2.5	× 10 ¹³ cm ⁻³ and with			
	(1)	p-type with thermal	equilibri	um hole conce	entration o	of $1.5 \times 10^{13} \text{ cm}^{-1}$	-3				
	(2)	n-type with thermal	equilibri	um electron co	oncentration	on of 1.5×10^{13}	cm ⁻³				
	(3)	p-type with thermal	equilibri	um hole conce	entration o	of 2.5×10^{26} cm	-3				
	(4)	n-type with thermal	equilibri	um electron co	oncentration	on of 2.5×10^{26}	cm ⁻³				

IS 2016 D 6 J

30.	In TV Signal Transmission	AM is used for Video	o Bro	padcasting		
	(1) for Bandwidth conser	rvation				
	(2) for having better pictor	ure quality				
	(3) since AM is with be	etter noise performance	than	ı FM		
	(4) since AM signal trave	els over longer distance	es			
21	For a DIT I = 5 001 mA	I = 40 u A and I = 1	۸	the DC current gair	n of E	PIT is
J1.	For a BJT, $I_C = 5.001 \text{ mA}$, $I_C = 5.001 \text{ mA}$	$I_{\rm B} = 49 \mu A \text{ and } I_{\rm CBo} = 1$ (2) 100	μA , (3)			50
	(1) 71	(2) 100	(3)	80	(+)	30
32.	One of the applications of cu	urrent mirror is				
	(1) Output current limiting					
	(2) Obtaining a very high o	current gain				
	(3) Current feedback					
	(4) Temperature stabilized	biasing				
33.	Motab the following List Ly	rith Ligt II				
33.	Match the following List-I w List-I	List–II				
			ouroo			
	A. CB configuration B. Zener diode	P. Constant Voltage So Q. Frequency Variation				
	C. Varactor diode	R. Constant Current S				
	(1) A-P, B-R, C-Q	K. Constant Current S		A-R, B-P, C-Q		
	(1) A-P, B-R, C-Q (3) A-Q, B-Q, C-R		` '	A-R, B-F, C-Q A-Q, B-R, C-P		
	(5) 11-Q, D-Q, C-R		(ד)	71-Q, D-R, C-1		
34.	When the JFET is no longer	able to control the curre	ent, th	is point is called th	e	
	(1) Breakdown voltage		(2)	Depletion region		
	(3) Saturated point		(4)	Pinch-off region		
35	In a Varactor diode using all	loy junction the transist	or car	nacitance is nronort	ional	to
	(1) v_i^2	(2) $1/v_i$	-	$1/\sqrt{v_i}$		$1/v_i^2$
	(*) ' j	(=) 1/ r _j	(5)	V - J	(')	*′ *J
36.	The cut in voltage of a "S	i" tunnel diode is				
	(1) 0.7V	(2) 0.3V	(3)	0.1V	(4)	0V

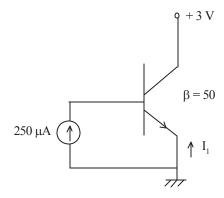
IS 2016 D 7 J

- 37. The material popularly used for contacts and interconnections in ICs is
 - (1) Copper
- (2) Aluminum
- (3) Silver
- (4) Zinc

- **38.** Match the following
 - (a) Sampling
- (P) Better S/N
- (b) Quantization
- (Q) Analog signal
- (c) Diode detector
- (R) Power coupling
- (d) Index profile
- (S) FM demodulation
- (T) Diagonal clipping

Code:

- (a) (P)
- (b)
- (c)
- (d)


(R), (S)

- $(2) \qquad (T)$
- (Q) (T)
- (T) (O) (R)
- (Q), (R)

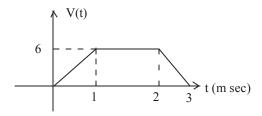
- (3) (Q) (4) (Q)
- (P) (P)
- (S), (T) (S)
- (R) (R) (T)
- 39. Number of electrons in any shell 'n' of an atom can be determined by the formula
 - (1) $4n^2$

- (2) $3n^2$
- (3) $2n^2$
- (4) n^2
- **40.** The main purpose of the metalization process in IC manufacturing is
 - (1) to act as heat sink
 - (2) to interconnect various circuit elements
 - (3) to protect chip from oxidation
 - (4) to supply a bonding surface for mounting the chip

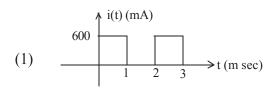
41.

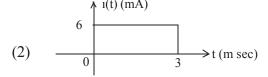
In the above circuit I_1 is

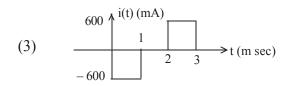
- (1) 12.75 mA
- (2) 12.5 mA
- (3) 12.75 mA
- (4) 5 mA

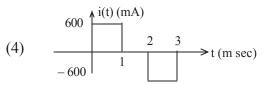


42.	The	threshold voltage of	f an n-channel MOSFET	can be i	ncreased b	y				
	(1)	increasing the char	nnel dopant concentration	n (2)	reducing	the channel length				
	(3)	reducing the chanr	nel dopant concentration	(4)	reducing	the gate oxide thickness	5			
43.	The		Class-A power amplifie	r is poor	because					
	(1)									
	(2)									
	(3)		BJT used is fixed at the	center of	DC load li	ine				
	(4)	BJT used is biased	below cut off							
44.	A n	etwork has 7 nodes	and 5 independent loops.	. The nur	mber of bra	anches in the network is	}			
	(1)	13	(2) 12	(3)	11	(4) 10				
45.			of two elements has the f	_						
		,) A and $v = 200 \sin(200 \circ 10^{-4})$							
		Resistance and Ca			-	nce and Inductance				
	(3)	Inductance and Re	sistance	(4)	Both Res	sistance				
46.	A d		nission line has the foll		arameters	:				
	$R=8~\Omega/m$; $L=0.4~\mu A/m$; $C=1~nF/m$									
		attenuation constan								
	(1)	0.16	(2) 0.4	(3)	0.02	(4) 0.8				
47.		•	ring statements P and C	-						
		•	ency the impedance of se							
	-	•	it, increasing the conduc	tance G	results in ir	ncrease in its Q-factor. V	Vhich of			
		following is correct.		(2)	D 4 D	10				
	` /	P is false and Q is		(2)		nd Q are true				
	(3)	P is true and Q is f	alse	(4)	Both P a	nd Q are false				
48.			(t) is having a Nyquist's ra				2π f _o t is			
	(1)	2 f _o	(2) f_{o}	(3)	$3 f_{o}$	(4) $4 f_0$				
49.	ΑI	OC voltage source i	s connected across a ser	ries RLC	circuit. U	Inder steady state cond	itions, the			
	app	lied DC voltage drop	os entirely across the							
	(1)	R only		(2)	L only					
	(3)	C only		(4)	R and L	combination				

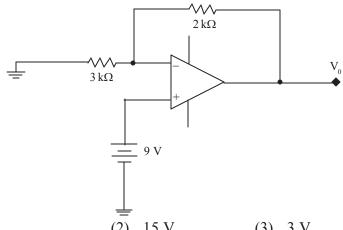

IS 2016 D 9 J




50. The voltage across a $100 \mu F$ capacitor is shown as



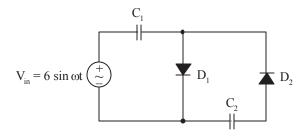
The current in the capacitor is



51. If the op-amp is ideal, What is the value of V_0 for circuit given below

(1) 10 V

(2) 15 V


(3) 3 V

(4) 6 V

IS 2016 D 10 J

52. The diodes and capacitors shown in the circuit are ideal. The voltage across C_2 is

(1) 6 V

- (2) 12 V
- (3) 18 V
- (4) 20 V

53. Match the following

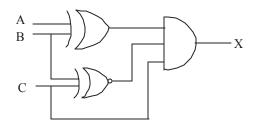
List - 1

List - 2

- (a) Wein bridge
- (p) RF oscillator, two inductances and one capacitance in the reactance network
- (b) Colpitts
- (q) LC oscillator for RF frequency: three capacitances and one inductance in the reactance network
- (c) Hartley
- (r) RC oscillator for audio frequency applications
- (d) Clapp
- (s) RF oscillator, two capacitances and one inductance in the reactance network
- (a) (b) (c) (d)
- (1) (q) (p)
- (s) (r)
- (2) (q)
- (n)
- (2) (4)
- (p) (r)
- (3) (r)
- (s)
- (p) (q)
- (4) (r)
- (p)

(s)

- (s) (q)
- **54.** An op-amp has a slew rate of 5 $V/\mu S$. At its output, the largest sinewave output voltage possible at frequency of 1 MHz is
 - (1) 10π volts
- (2) 5 volts
- (3) $5/\pi$ volts
- (4) $5/2\pi$ volts


55. There are 4 sources S_i (i = 1, 2, 3, 4), each transmitting 2 messages with the respective probabilities as shown below

Source	Message	Probability
$\overline{S_1}$	m ₁₁	0.9
	m ₁₂	0.1
$\overline{S_2}$	m ₂₁	0.6
	m ₂₂	0.4
S_3	S_{31}	0.5
•	S ₃₂	0.5
S_4	S ₄₁	1
	S ₄₂	0

The sources carrying maximum and minimum average information/message respectively are

- (1) S_3, S_1
- (2) S_1, S_2
- (3) S_3, S_4
- $(4) S_4, S_2$
- **56.** To implement Y=ABCD using only two input NAND gates, minimum number of NAND gates required are _____
 - (1) 5

- (2) 7
- (3) 6
- (4) 8
- 57. What are the inputs (A, B, C) to get output X = 1 for the below combinational circuit

(1) A = 1, B = 0, C = 1

(2) A = 1, B = 0, C = 0

(3) A = 0, B = 1, C = 1

- (4) A = 0, B = 0, C = 1
- 58. . _____ logic family has the lowest propagation delay
 - (1) CMOS
- (2) TTL
- (3) ECL
- (4) NMOS

59.	Indi	Indicate which of the following three binary additions are correct?												
	(x)	101	1 + 10	010 = 10	101									
	(y)	1010	0 + 11	01 = 10	111									
	(z)	1010	0 + 11	10 = 11	11									
	(1)	(x) c	only				(2)	(x) and (y) only						
	(3)	(x) a	ind (z)	only			(4)	(x), (y) an	nd (z)					
60.						r uses JK fl (in Ml		e propagati	on delay of e	each FF is 50ns, t	h			
	(1)	4			(2)	5	(3)	3	(4)	2				
61.	Hov	v mar	y stat	es do a 5	-bit ripple	e counter, ri	ng counter, J	Johnson cou	unter have res	spectively				
	(1)	32,5	5,10		(2)	15,32,5	(3)	5,10,5	(4)	32,10,10				
62.	Mat	Match the following												
	P.	A sh	ift reg	gister can	be used		A.	Code con	verter					
	Q.	A m	ultiple	exer can	be used		B.	To genera	ite memory cl	nip select				
	R.	A de	ecode	r can be	used		C.	To provide delay to the input						
							D.	As a man	y to one swite	ch				
		P	Q	R										
	(1)	C	D	В										
	(2)	A	В	C										
	(3)	A	C	В										
	(4)	В	C	D										
63.	The	numb	per of	minterms	s after mii	nimizing the	Boolean exp	pression						
	[D'	+ AB	'+A'	C + AC'	D + A'C'	'D]' is								
	(1) 1 (2			(2)	2	(3)	3	(4)	4					

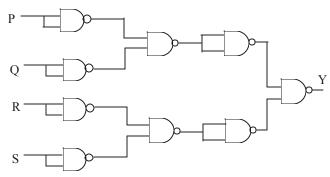
64. What is the minimal form of the function represented by the K-map

	1		1
1		1	

$$(1) \quad (a'b + ab')c$$

(2)
$$(a'b + ab')c'$$

- (4) $a \oplus b \oplus c$
- **65.** A 4-bit ripple counter and a 4-bit synchronous counter are made using flip-flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then


(1)
$$R = 10 \text{ ns}, S = 40 \text{ ns}$$

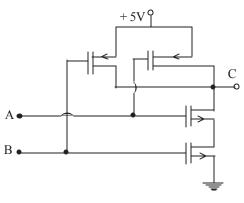
(2)
$$R = 40 \text{ ns}, S = 10 \text{ ns}$$

(3)
$$R = 10 \text{ ns}, S = 30 \text{ ns}$$

(4)
$$R = 30 \text{ ns}, S = 10 \text{ ns}$$

66. For the circuit shown in Fig. the Boolean expression for the output Y in terms of inputs P, Q, R and S is

$$(1) \quad \overline{P} + \overline{Q} + \overline{R} + \overline{S}$$


(2)
$$P + Q + R + S$$

$$(3) (\overline{P} + \overline{Q})(\overline{R} + \overline{S})$$

(4)
$$(P+Q)(R+S)$$

67. Identify the logic gate given in the figure

- (1) NOR
- (2) NAND
- (3) AND
- (4) OR

68. The AM signal $x(t) = 2(1 + 2 \cos 2 \pi (1000) t] \cos 2\pi (10^5) t$ can be detected using

- (1) Envelope Detector
- (2) Square Law Detector
- (3) Synchronous Detector
- (4) Envelope, Square Law and Synchronous Detector

69. A 1 KHz sinusoidal signal is ideally sampled at 1500 samples/sec and the sampled signal is passed through an ideal LPF with cut-off frequency 800Hz. The output signal has the frequency

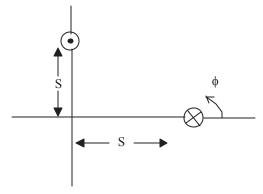
- (1) 0.25KHz
- (2) 0.5KHz
- (3) 0.15KHz
- (4) 0.75KHz

70. A communication channel with AWGN operating at a signal to noise ratio SNR \gg 1 and bandwidth B has capacity C_1 . If SNR is doubled keeping B constant, the resultant capacity C_2 is given by

 $(1) \quad C_2 \approx C_1 + B$

 $(2) \quad C_2 \approx C_1 + 2B$

 $(3) \quad C_2 \approx 2C_1$


(4) $C_2 \approx C_1 + 0.3B$

71. The amplitude of a random signal is uniformly distributed between -5 V and +5V. If it is sampled and quantized uniformly into 130 levels, the S/N_q available is

- (1) 42 dB
- (2) 48 dB
- (3) 54 dB
- (4) 60 dB

72. Two identical antennas are placed in the $\theta = \frac{\pi}{2}$ plane as shown in fig. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ . The correct value of the magnitude of far zone resultant electric field strength normalized with that of a single element, both computed for $\phi = 0$, is

- (2) $2\sin\left(\frac{2\pi S}{\lambda}\right)$ (3) $2\cos\left(\frac{\pi S}{\lambda}\right)$ (4) $2\sin\left(\frac{\pi S}{\lambda}\right)$
- 73. What is the free space attenuation of a satellite communication system operating at 36,000 km above the earth at 5GHz?
 - (1) 198dB
- (2) 202dB
- (3) 142dB
- (4) 138dB

- 74. Light is confined within the core of a step index fiber by
 - (1) Refraction
 - (2) Total internal reflection at the outer edge of the cladding
 - (3) Total internal reflection at the core cladding boundary
 - (4) Reflection from the fiber's plastic coating
- 75. In cellular networks, simultaneous users over the same channel is achieved by:
 - I. Digital Technology
 - II. Frequency re-use
 - III. CDMA and TDMA
 - Using VLRs in each area and the HLR in the network switching centre.
 - (1) I and II
- (2) I and III
- (3) II and III
- (4) IV only

- 76. An antenna consisting of a 50 meter long vertical conductor operates over a perfectly conducting ground plane. It is base-fed at a frequency of 600 kHz. It has a loss resistance of 1.5 ohms. The radiation resistance and efficiency of the antenna is:
 - (1) $\frac{2\pi^2}{5}$, 89%
- (2) $\frac{\pi^2}{5}$, 76% (3) $\frac{4\pi^2}{5}$, 84% (4) $20\pi^2$, 65%
- 77. A lossless transmission line having 50Ω characteristic impedance and length $\lambda/4$ is short circuited at one end and connected to an ideal voltage source of 1V at other end. The current drawn from the voltage source is
 - (1) 0 Amp
- (2) 0.02 Amp
- $(3) \infty$
- (4) 0.01 Amp

- **78.** A helical antenna is used for satellite tracking because of its
 - (1) circular polarization

maneuverability

(3) broad bandwidth

- (4) good front to back ratio
- 79. A dipole antenna of $\lambda/8$ length has an equivalent total resistance of 1.5 Ω . The efficiency of the antenna is
 - (1) 0.89159%
- (2) 8.9159%
- (3) 89.15%
- (4) 891.59%

- **80.** Which of the following statements is not correct?
 - (1) Thermo couple meters can be used to measure DC
 - (2) Moving coil meters can be used for measuring ac
 - (3) Moving Iron meters can be used for measuring DC
 - (4) Moving Iron meters and thermocouple meters can be used for measuring both ac and DC
- **81.** Consider the following statements:

In a measuring instrument,

- A. Linearity is more important than sensitivity
- B. High precision indicates high accuracy
- C. Accuracy cannot be better than resolution
- (1) A, B, C are correct

(2) A and B are correct

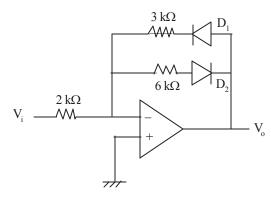
(3) B and C are correct

(4) A and C are correct

IS 2016 D 17 J

A.	M						
	Moving iron .						
B.	PMMC						
C.	Induction						
		(2)	A, B, C	(3)	C, A, B	(4)	B, A, C
	-	mete	er is \pm 2%, then, at	a read	ding of 50 mA, the	maxi	mum value of the
	• •						
(1)	48 mA	(2)	49 mA	(3)	51 mA	(4)	52 mA
			•		-	mpro	ve the existing signal
		-	*	_	•		
(1)	7 bits/sample	(2)	8 bits/sample	(3)	9 bits/sample	(4)	10 bits/sample
A ba	and limited source with	a bai	ndwidth of 'B' Hz	is san	npled at its Nyquis	t's rat	e and quantized into
4 lev	vels. If all the Q-levels	-	-	ropy (of the source in bits	s/sec	is
(1)	2 B	(2)	4 B	(3)	2	(4)	4
The	maximum percentage	error i	n the difference of	two n	neasured voltages,	when	VI= 100 V ±1%
and	$V2 = 80 \text{ V} \pm 5\% \text{ will } t$	e					
(1)	± 5%	(2)	± 1%	(3)	± 10%	(4)	± 25%
The	addition of co	nvert	s the basic D'arson	ıval m	novement into DC	voltm	neter
(1)	parallel resistor			(2)	series resistor		
(3)	parallel capacitor			(4)	series capacitor		
The	difference between tru	e valı	ue and measured	value	is called as	_	
(1)	Relative error			(2)	Static error		
(3)	Linearity error			(4)	Limiting error		
The	accuracy of a thermon	neter 1	having range of 20	00°C i	s specified as 99%	of it	ts full scale reading.
If th	e reading is 50°C then	the sta	atic error =				
(1)	0.5°C	(2)	1°C	(3)	2°C	(4)	5°C
Whi	ch of the following is ar	Acti	ve Transducer?				
(1)	Thermometer			(2)	Thermistor		
(3)	Thermocouple			(4)	Strain gauge		
	If th actu (1) In a to qu (1) A bate (1) The and (1) The (1) (3) The (1) (3) Whit (1)	(1) A, C, B If the accuracy of a 100 mA actual reading may be (1) 48 mA In a PCM system, the numb to quantization noise ratio b (1) 7 bits/sample A band limited source with 4 levels. If all the Q-levels a (1) 2 B The maximum percentage e and V2 = 80 V ± 5% will b (1) ± 5% The addition of co (1) parallel resistor (3) parallel capacitor The difference between true (1) Relative error (3) Linearity error The accuracy of a thermon of the reading is 50°C then to (1) 0.5°C Which of the following is an accuracy of the following is accuracy of the following is an accuracy of the following is accuracy of the followi	(1) A, C, B (2) If the accuracy of a 100 mA meta actual reading may be (1) 48 mA (2) In a PCM system, the number of a to quantization noise ratio by 12 and (1) 7 bits/sample (2) A band limited source with a band 4 levels. If all the Q-levels are equal (1) 2 B (2) The maximum percentage error in and V2 = 80 V ± 5% will be (1) ± 5% (2) The addition of converts (1) parallel resistor (3) parallel capacitor The difference between true valuation (1) Relative error (3) Linearity error The accuracy of a thermometer of the reading is 50°C then the state (1) 0.5°C Which of the following is an Activation (1) Thermometer	(1) A, C, B (2) A, B, C If the accuracy of a 100 mA meter is ± 2%, then, at actual reading may be (1) 48 mA (2) 49 mA In a PCM system, the number of quantization levels to quantization noise ratio by 12 dB, the data word (1) 7 bits/sample (2) 8 bits/sample A band limited source with a bandwidth of 'B' Hz 4 levels. If all the Q-levels are equiprobable, the ent (1) 2 B (2) 4 B The maximum percentage error in the difference of and V2 = 80 V ± 5% will be (1) ± 5% (2) ± 1% The addition of converts the basic D'arsor (1) parallel resistor (3) parallel capacitor The difference between true value and measured of the reading is 50°C then the static error = (1) 0.5°C (2) 1°C Which of the following is an Active Transducer? (1) Thermometer	(1) A, C, B (2) A, B, C (3) If the accuracy of a 100 mA meter is ± 2%, then, at a read actual reading may be (1) 48 mA (2) 49 mA (3) In a PCM system, the number of quantization levels is 68. to quantization noise ratio by 12 dB, the data word length (1) 7 bits/sample (2) 8 bits/sample (3) A band limited source with a bandwidth of 'B' Hz is san 4 levels. If all the Q-levels are equiprobable, the entropy (1) 2 B (2) 4 B (3) The maximum percentage error in the difference of two reand V2 = 80 V ± 5% will be (1) ± 5% (2) ± 1% (3) The addition of converts the basic D'arsonval m (1) parallel resistor (2) (3) parallel capacitor (4) The difference between true value and measured value (1) Relative error (2) (3) Linearity error (4) The accuracy of a thermometer having range of 200°C if the reading is 50°C then the static error = (1) 0.5°C (2) 1°C (3) Which of the following is an Active Transducer? (1) Thermometer	(1) A, C, B (2) A, B, C (3) C, A, B If the accuracy of a 100 mA meter is ± 2%, then, at a reading of 50 mA, the actual reading may be (1) 48 mA (2) 49 mA (3) 51 mA In a PCM system, the number of quantization levels is 68. If it is required to it to quantization noise ratio by 12 dB, the data word length required is (1) 7 bits/sample (2) 8 bits/sample (3) 9 bits/sample A band limited source with a bandwidth of 'B' Hz is sampled at its Nyquis 4 levels. If all the Q-levels are equiprobable, the entropy of the source in bits (1) 2 B (2) 4 B (3) 2 The maximum percentage error in the difference of two measured voltages, and V2 = 80 V ± 5% will be (1) ± 5% (2) ± 1% (3) ± 10% The addition of converts the basic D'arsonval movement into DC (1) parallel resistor (2) series resistor (3) parallel capacitor (4) series capacitor The difference between true value and measured value is called as (1) Relative error (3) Linearity error (4) Limiting error The accuracy of a thermometer having range of 200°C is specified as 99% If the reading is 50°C then the static error = (1) 0.5°C (2) 1°C (3) 2°C Which of the following is an Active Transducer? (1) Thermometer (2) Thermistor	(1) A, C, B (2) A, B, C (3) C, A, B (4) If the accuracy of a 100 mA meter is ± 2%, then, at a reading of 50 mA, the maximactual reading may be (1) 48 mA (2) 49 mA (3) 51 mA (4) In a PCM system, the number of quantization levels is 68. If it is required to improte to quantization noise ratio by 12 dB, the data word length required is (1) 7 bits/sample (2) 8 bits/sample (3) 9 bits/sample (4) A band limited source with a bandwidth of 'B' Hz is sampled at its Nyquist's rate 4 levels. If all the Q-levels are equiprobable, the entropy of the source in bits/sec (1) 2 B (2) 4 B (3) 2 (4) The maximum percentage error in the difference of two measured voltages, when and V2 = 80 V ± 5% will be (1) ± 5% (2) ± 1% (3) ± 10% (4) The addition of converts the basic D'arsonval movement into DC voltmed (1) parallel resistor (3) parallel capacitor The difference between true value and measured value is called as (1) Relative error (3) Linearity error (4) Limiting error The accuracy of a thermometer having range of 200°C is specified as 99% of its 1 fthe reading is 50°C then the static error = (1) 0.5°C (2) 1°C (3) 2°C (4) Which of the following is an Active Transducer? (1) Thermometer

IS 2016 D 18 J



91.		The radiation resistance of an antenna is 40 Ω and the loss resistance of 10 Ω . If it has a power gain of 16, its directivity is											
	(1)		(2)	10	(3)	12.8	(4)	16					
92.	Wh	ich type of the foll	owing watt	meters ca	nnot be used f	for both A.C.	and D.C. p	ower measure	ement				
	(1)	Dynamometer ty	pe		(2)	Electrostati	ic type						
	(3)	Induction type			(4)	Electromag	gnetic type						
93.	to be	An RC Coupled CE amplifier circuit uses a silicon transistor. The capacitors $C_{\rm C}$ and $C_{\rm E}$ can be assumed to be short at signal frequency and the effect of output resistance $R_{\rm 0}$ can be ignored. If $C_{\rm E}$ is disconnected from the circuit, which one of the following statements is TRUE ?											
	(1)	The input resistar	nce R _i increa	ases and th	ne magnitude o	of voltage gai	n A _v decrea	ases					
	(2)	(2) The input resistance R_i decreases and the magnitude of voltage gain A_V increases											
	(3)	(3) Both input resistance R_1 and the magnitude of voltage gain A_V decrease											
	(4)	(4) Both input resistance R_i and the magnitude of voltage gain A_v increase											
94.	To draw ac equivalent circuit of a Transistor, all												
	a.	DC sources are s	horted										
	b.	ac sources are sh	orted										
	c.	DC sources are o	ppened										
	d.	ac sources conne	ected to DC	sources									
	(1)	b and d			(2)	a and b							
	(3)	a only			(4)	c and d							
95.	A so	ource follower has	a voltage g	ain of									
	(1)	gm*rd			(2)	gm *rs							
	(3)	(gm *rs) / (1+gm	* rs)		(4)	(gm *rd)/(1+gm *rd)						

IS 2016 D 19 J

96.

In the above circuit, assuming op-amp, D_1 and D_2 are ideal, if $V_i = 2$ volts, the o/p V_0 is

(1) -6 V

- (2) -3 V (3) -8 V
- 97. The output voltage of OPAMP for input voltage of V_1 = 150 μV ; V_2 = 140 μV and differential gain of $A_d = 4000$, the value of CMRR is 100 is
 - (1) 45.8 mV

(2) 40.66 mV

(3) $10 \,\mu\text{V}$

(4) $145 \mu V$

- **98.** Match the following
 - BJT A.

- P. Population inversion
- В. MOS capacitor
- Q. Pinch-off voltage
- C. LASER diode
- R. Early effect

D. **JFET**

- S. Flat-band voltage
- (1) A-S, B-P, C-R, D-Q

(2) A-R, B-S, C-P, D-Q

(3) A-P, B-Q, C-R, D-S

- (4) A-Q, B-R, C-P, D-S
- **99.** Which of the following are valid with respect to a lead compensating network?
 - (a) It improves response time
 - (b) It stabilizes the system having low phase margin
 - (c) It results in moderate increase in gain without affecting stability
 - (d) Increases resonant frequency
 - (1) (a) and (b)

(2) (a) and (c)

(3) (a), (c) and (d)

(4) (a), (b), (c) and (d)

100.	The	Q-point in a voltage an	plifie	r is selected in	the middle	e of the active regi	ion be	cause				
	(1) It gives better stability(2) The circuit needs a small no. of capacitors											
	(2)	The circuit needs a sn	nall no	of capacitors	3							
	(3)	The biasing circuit nee	ed less	number of res	sistors							
	(4)	It gives distortion less	outpu	t								
101	. The	RST 5.5 interrupt se	rvice	routine start f	from locat	ion						
	(1)	0020Н	(2)	0024H	(3)	0028H	(4)	002CH				
102.		stack is a specialized t	empo	rary	_access m	emory during		and				
	(1)	random, store, load			(2)	random, push, lo	oad					
	(3)	sequential, store, pop			(4)	sequential, push,	pop					
103.	Bac	kground controls of ma	ny pic	ture tubes are	for the							
	(1)	ac bias	(2)	de bias	(3)	ac video signal	(4)	de video signal				
104.	The	number of lines scanne	ed per	frame in the ra	aster on the	e picture tube scre	en is					
	(1)	525	(2)	262	(3)	20	(4)	10				
105.	. If th	ne horizontal flyback is	10 per	cent, this time	equals							
	(1)	10 μs	(2)	56 μs	(3)	6.4 μs	(4)	83 μs				
106.	The	Boolean expression (x	(+ y)	$(x + \overline{y})(\overline{x} +$	y) is equa	al to						
	(1)	$\overline{\mathbf{x}}$ y	(2)	x y	(3)	xy	(4)	$\overline{x} \overline{y}$				
107.	Wh	ich one of the following	anten	nas is best exc	cited from a	a waveguide						
	(1)	Biconical	(2)	Horn	(3)	Helical	(4)	Discone				

IS 2016 D 21 J

	(1) (2) (3) (4)	To overcome Because of ou Because of ea To ensure that	atmospheric a tput tube powerth's curvature t the applied do	er limitations e e voltage is not exc	cessive		MDG	
109.		percentage pov ulation, under '	_	_	gnal w	1th reference to A	M-DS	B-FC signal at 25%
	(1)	65 %	(2)	50%	(3)	$\frac{32}{33}\%$	(4)	25%
110.	In di	gital Time Divi	sion multiplex	ing, synchronizatio	n is pe	erformed by	tech	nique
	(1)	bit stuffing	(2)	bit coding	(3)	bit interleaving	(4)	bit surfing
111.		yquist pulse shag pulses with _			ns can	be reduced by	th	ne signaling rate and
	(1)	reducing, sine	(2)	reducing, cosine	(3)	increasing, sine	(4)	increasing, cosine
112.				nel operating at an				nas a Capacity C ₁ . I
				$C_2 = C_1 + B$		-		$C_2 = C_1 + 0.3B$
113.						watts, transmitting	anteni	na of 10 dB gain, the
				s mW/s				
	(1) 1	0	(2)	01	(3)	100	(4)	1000
114.	The	dominant mode	e in a hollow re	ectangular wavegui	ide is			
		TE10		TM10	(3)	TEM	(4)	TE11
115.	Cons	sider the follow	ring cascade of	f two causal system	ns			
		x(t)	$H_{l}(s) =$	1 H	$_{2}(s) = \overline{}$	$\frac{1}{s+1}$ $y(t)$		
	The	unit impulse re	sponse of the	cascade is				

IS 2016 D 22 J

(2) $e^t \cdot u(t)$

(3) $e^{-t}u(t)$

(4) $e^{-t} \cdot u(-t)$

 $(1) \quad e^t \cdot u(-t)$

116. If the broad dimension of a rectangular guide is 3.0 cm, it's dominated mode cut-off frequency is

- (1) 3 GHz
- (2) 5 GHz
- (3) 10 GHz
- (4) 6 GHz

117. Ferrite microwave devices are _____

(1) Passive, reciprocal

(2) Passive, non-reciprocal

(3) Active, reciprocal

(4) Active, non-reciprocal

118. The frequency deviation of the Angle Modulated signal $x(t) = \cos{(2000 \ \pi t + 20 \ t^2)}$ for $0 \le t \le 1$ in Hz is

 $(1) \quad \frac{10}{\pi}$

- $(2) \quad \frac{20}{\pi}$
- (3) $\frac{30}{\pi}$
- (4) $\frac{40}{\pi}$

119. A VSWR meter operates typically at _____

- (1) 1 GHz
- (2) 10 GHz
- (3) 1 MHz
- (4) 1 kHz

120. The scattering matrix of magic tee is

$$(1) \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c|ccccc}
 & 1 & 0 & 0 & -1 & 1 \\
 & 0 & 0 & 1 & 1 \\
 & -1 & 1 & 0 & 0 \\
 & 1 & 1 & 0 & 0
\end{array}$$

$$(3) \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

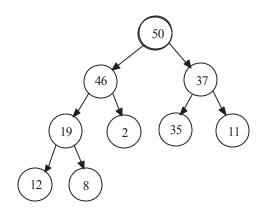
121. The biggest advantage of the TRAPATT diode over the IMPATT diode is its

(1) lower noise

- (2) higher efficiency
- (3) ability to operate at high frequencies
- (4) lesser sensitivity to harmonics

122.		Gunn diode is a negativaber of p-n junctions ava			ich is	used as source	of micro	owaves. What is the
	(1)	1	(2)	2	(3)	3	(4)	0
123.	. A re	eflectometer consists of						
	(1)	Two directional couple	ers		(2)	One directiona	l couple	r and an insulator
	(3)	One directional couple	er and	a circulator	(4)	Two directions	al couple	ers and a circulator
124		avoid difficulties with s	strapp	ing at high freque	encies,	what type of ca	vity str	ucture is used in the
	(1)	Hole and Slot			(2)	Slot		
	(3)	Vane			(4)	Rising Sun		
125.	The	full form of MASER is						
	(1)	Microwave amplificati	on by	stimulated emissi	on of	radiation		
	(2)	Microwave antenna by	y stim	ulated emission of	radiat	tion		
	(3)	Microwave amplificati	on for	simultaneous emi	ission	of radiation		
	(4)	Microwave antenna fo	r simı	ultaneous emission	of ra	diation		
126	The	Modulation Scheme us	ed in	GSM is				
	(1)	FSK	(2)	GMSK	(3)	OQPSK	(4)	QAM
127	. Equ	ivalent of decimal value	e of 1	78 in straight bina	ry cod	e is a	nd in BO	CD is
	(1)	11000,11111111			(2)	10111101,100	0000	
	(3)	10110010,101111000)		(4)	111111,11000	00	
128	The	Post Fix Form for the	INFIX	X form of (a+b*c)				
	(1)	bac*+	(2)	abc*+	(3)	bac+*	(4)	abc+*
-								

IS 2016 D 24 J



129	. Mat	ch the following						
	A.	SRAM	a.	non volatile				
	B.	DRAM	b.	less power				
	C.	ROM	c.	costly				
	D.	Hard disk	d.	large size				
	(1)	c,a,b,d	(2)	c,b,a,d	(3)	d,a,b,c	(4)	d,b,a,c
130	. Hov	v will you free the allo	ocated	l memory?				
	(1)	remove(var-name)			(2)	free(var-name)		
	(3)	delete(var-name)			(4)	dalloc(var-name)		
131	. In w	which of the following tec	chnolo	ogies is the term H	FC us	sed ?		
	(1)	DSL	(2)	PPPoE	(3)	Dedicated T1	(4)	Frame relay
132	. Mer	mory Buffer Register (M	BR) i	S				
	(1)	hardware memory dev	ice w	hich denotes the lo	cation	n of the current inst	tructio	on being executed
	(2)	a group of electrical circ	cuits (1	nardware), that per	forms	the intent of instruct	tions f	etched from memory
	(3)	contains the address of	f the r	nemory location th	nat is	to be read from or	storec	l into
	(4)	contains a copy of the	_	· ·		specified by the M.	AR at	fter a "read" or the
		new contents of the me	emory	prior to a "write"				
133	. A co	ollection of related fields	in da	ta organization is o	alled			
	(1)	Group	(2)	Register	(3)	File	(4)	Organization
134		reproduced picture in a . This is due to	TV re	eceiver, the left ha	nd poi	rtion is too broad, a	and th	e right portion is too
	(1)	Poor vertical scanning			(2)	Poor interlacing		
	(3)	Poor synchronization			(4)	Poor horizontal so	cannii	ng

IS 2016 D 25 J

135.

The above given Tree is

- (1) Complete and heap
- (3) Full

- (2) Full and complete
- (4) Heap

136. We can use C++ as

- (1) Procedural language only
- (2) Object oriented language only
- (3) Both Object oriented and Procedural language
- (4) Neither Object oriented nor Procedural language

137. CISC stands for

- (1) Common instruction set computers
- (2) Complex instruction set compilers
- (3) Complex instruction set computers
- (4) Compound instruction set computers

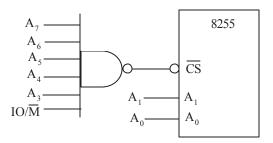
138. Virtual memory consists of

- (1) Magnetic memory
- (2) Dynamic RAM
- (3) Static RAM
- (4) ROM

139. Schemas are like _____ in DBMS

- (1) Stacks
- (2) Files
- (3) Folders
- (4) Databases

IS 2016 D 26 J


140. Which of the following is correct?

	(1)	Address Bus is a Bidirectional Bus										
	(2)	Data Bus is a Bidirectional Bus										
	(3)	Both Address Bus and Data Bus are bidirectional										
	(4)	Neither Address Bus nor Data Bus is bidirectional										
1/1	141. If the data is available in the instruction itself, it is called addressing mode											
171	41. If the data is available in the instruction itself, it is called addressing mode											
	(1)	Direct	(2)	Register	(3)	Immediate	(4)	Indirect				
142	142. Consider the sequence of 8085 instructions given below:											
		LXI	Н,	9258								
		MOV	A,	M								
		CMA										
		MOV	M,	A								
	whic	ch one of the fo	ollowing is per	formed by this s	sequence's	?						
	(1)	Contents of l	ocation 9258 a	re moved to the	e accumu	lator						
	(2)	Contents of	location 9258 a	are compared w	vith the co	ontents of accum	nulator					
	(3)	Contents of	location 9258	are complemen	ted and s	tored in location	n 9258					
	(4)	Contents of l	ocation 5892 a	re complement	ed and st	ored in location	5892					
143	. Ass	ertion (A) :	A look-ahead	d carry adder is	a fast ad	lder						
	Rea	ison (R) :	A parallel car	ry adder genera	ates sum o	digits directly fro	om the in	put digits				
	(1)	Both (A) and	(R) are true ar	nd (R) is correc	t explana	tion of (A)						
	(2)	Both (A) and	(R) true but (I	R) is not the con	rect expl	anation of (A)						
	(3)	(A) is true bu	t (R) is false									
	(4)	(A) is false be	ut (R) is true									

IS 2016 D 27 J

- **144.** An 8255 chip is interfaced to an 8085 microprocessor system as an I/O mapped I/O as shown in the figure. The address lines A0 and A1 of the 8085 are used by the 8255 chip to decode internally its three ports and the control register. The address lines A0 to A7 as well as the IO/M' signal are used for address decoding. The range of addressees for which the 8255 chip would get selected is
 - (1) F8H-FBH
- (2) F8H-FCH
- (3) F8H-FFH
- (4) F0H F7H

145. For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000 MVI A, 45H

3002 MOV B, A

3003 STC

3004 CMC

3005 RAR

3006 XRAB

(1) 00H

- (2) 45H
- (3) 67H
- (4) E7H
- **146.** In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B. As a result,
 - (1) Carry flag will be set but Zero flag will be reset
 - (2) Carry flag will be reset but Zero flag will be set
 - (3) Both Carry flag and Zero flag will be reset
 - (4) Both Carry flag and Zero flag will be set

IS 2016 D 28 J

147.	. Wh	ich of the following pins	s of 80	185 is used in the in	nterfac	eing of a slow perip	heral	device to it?
	(1)	TRAP	(2)	RESET	(3)	HOLD	(4)	READY
148	. Wh	ich of the following fla	ag is	not available in 80	085			
	(1)	Sign flag			(2)	Overflow flag		
	(3)	Zero flag			(4)	Auxiliary carry fla	ag	
149.	. Wh	ich register is used in I/O	O oper	ration in 8085				
	(1)	SP	(2)	IR	(3)	A	(4)	B-C pair
150.	. The	minimum number of a	ddress	s lines required to a	ddres	s 256 kb of memor	ry are	
	(1)	8	(2)	16	(3)	18	(4)	20
151.	. Dial	lling procedure for acces	ssing l	ocal, STD & ISD t	faciliti	es from extension	phone	e is through
	(1)	EPABX	(2)	Virtual calling	(3)	Conference call	(4)	Digital call
152.		TN (PUBLIC SWITCH			TWOI	RK) telephone net	works	s depend on
		ching to connect one pl	none t	o another	(2)	Circuit avvitabina		
	(1)	Packet switching			(2)	Circuit switching		
	(3)	Network switching			(4)	Digital switching		
153.	The	type of multiple access	ing us	sed in GSM techno	logy i	S		
	(1)	FDD/TDMA	(2)	CDMA	(3)	OFDMA	(4)	SDMA
154.	. Wh	ich of the following is n	ot bas	ed on wideband sy	stem '	?		
	(1)	FDMA	(2)	CDMA	(3)	SSMA	(4)	FHMA

IS 2016 D 29 J

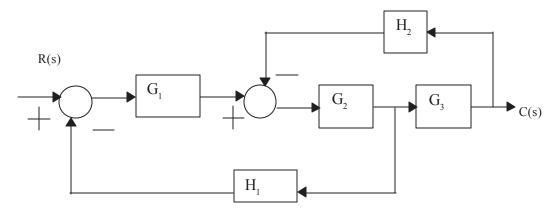
155.	Am	inimum sampling rate of		is required for a good quality representation of telephone conversation.					
	(1)	20 KHz	(2)	4 KHz	(3)	40 KHz	(4)	8 KHz	
156.		ich of these block proces		ŕ	1	0	nalog	ue signal processing	
	(1)	ВНІ	(2)	ССВ	(3)	TCP	(4)	TMP	
157.	. A lo	ocal loop has	_ cabl	le that connects the	subs	criber telephone to	the r	nearest end office.	
	(1)	Twisted wire pair	(2)	Co-axial	(3)	Fiber-optic	(4)	Coiled	
158.		enable DSL technology nteract with customer me			must	t have a	loca	ted in their networks	
	(1)	LAN switch	(2)	.RPR	(3)	DSLAM	(4)	PRP	
159.	. Wh	ich of the following enco	oding	methods does not	provio	le for synchronizati	on ?		
	(1)	RZ	(2)	NRZ-L	(3)	NRZ-I	(4)	Manchester	
160.	. In N	Manchester and different	ial Ma	anchester encoding	, the t	cransition at the mic	ldle o	of the bit is used for	
	(1)	Bit transfer	(2)	Synchronization	(3)	Baud transfer	(4)	Cloud transfer	
161.	. In a	DS-SS systems the							
		bilt rate = 1 Mbps							
		chip rate $= 7$ Mbps							
	The	length of the memory of	of the	PN sequence gene	rator o	of the above system	ı is		
	(1)	4	(2)	5	(3)	3	(4)	6	

IS 2016 D 30 J

162.	The	rate of the PN code	in a s	spread spectru	m system	is called		
	(1)	Chipping Frequency (fc)		(2)	Information rate		
	(3)	Chip			(4)	Epoch		
163.	Dire	ect inward dialling is a fe	eature	in				
	(1)	PSTN	(2)	PBX	(3)	EPABX	(4)	VPN
164.	The	phase margin of a syst	em is	0°. It represents	s a			
	(1)	stable system			(2)	unstable system		
	(3)	conditionally stable sy	stem		(4)	marginally stable	e syste	m
165.	20	db/decade is equal to						
	(1)	10 db/octave	(2)	5 db/octave	(3)	6 db/octave	(4)	20 db/octave
166.	Sig	nal flow graph is used to	find					
	(1)	stability of the system			(2)	controllability of	the sy	rstem
	(3)	observability of the sy	stem		(4)	transfer function	of the	system
167.	A u	nity feedback system h	as op	en loop transfe	r function	$G(s) = \frac{2}{(s+1)}$	$\frac{ds}{(s+2)}$	The steady state
	resp	onse of the closed loop	syste	m to a unit step	reference	e input is		
	(1)	unit step	(2)	unit ramp	(3)	unit impulse	(4)	zero
168.	Wh	ich of the following poi	nts is 1	not on the root-	locus of th	ne system with th	e open	loop transfer
	func	etion $G(s) H(s) = \frac{1}{s(s + s)}$	3)(s	+ 5)				
	(1)	-4	(2)	-3	(3)	-2	(4)	$-\infty$

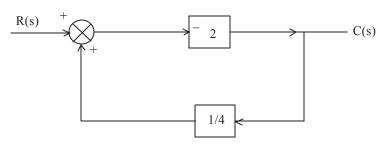
31 J

IS 2016 D



169.	For	a second-order system	with tl	ne closed loc	p transfer fu	nction T(s)	$=\frac{16}{s^2+6s+}$	the settling time
		econds for 2% band is						
	(1)	1	(2)	1.33	(3)	2	(4)	1.43
170.	A sy	stem has a single pole a	t orig	in. Its impul	se response v	will be		
	(1)	Constant			(2)	Ramp		
	(3)	Decaying exponential			(4)	Oscillatory		
171.	For	a system given by G(s)	H(s)	=k/[(s(s+1)((s+2)(s+3)],	the number of	of separate	root loci is
	(1)	1	(2)	2	(3)	3	(4)	4
172.	Roo	ts of system's character	istic e	quation are	same as			
	(1)	The closed loop poles			(2)	The open le	oop poles	
	(3)	The closed loop poles	and z	zeros	(4)	The closed	loop zeros	
173.		econd order system has t		_			=	_
	(1)	π sec	(2)	$\pi/3$ sec	(3)	$2\pi/3$ sec	(4)	$\pi/2$ sec
174.	Con s-pla	sider the equation 2s ⁴ +	$-s^3+3s$	S ² +5 _S +10=0	. This equat	ion has	roots	in the right half of
	(1)	one	(2)	two	(3)	three	(4)	four
175.	GH	$= k/s(s+6)(s^2+6s+18)$, the	value of 'k'	at break awa	ay point is		
	(1)	81	(2)	9	(3)	3	(4)	72

IS 2016 D 32 J



176. For the block diagram shown in fig C(s)/R(s) is

- (1) $G_1G_2G_3/(1+H_2G_2G_3+H_1G_1G_2)$
- (2) $G_1G_2G_3/(1+G_1G_2G_3H_1H_2)$
- (3) $G_1G_2G_3/(1+G_1G_2G_3H_1+G_1G_2G_3H_2)$
- (4) $G_1G_2G_3/(1+G_1G_2G_3H_1)$

177. The closed loop gain of the following system is

(1) -4

- (2) 4
- $(3) -\frac{4}{3}$
- $(4) \frac{4}{3}$

178. The angle between rotating axis and beam axis in conical scanning is called

- (1) Incident angle
- (2) Reflected angle
- (3) Squint angle
- (4) Beam angle

179. Given the pulse width of 8µs and duty cycle of 8%, the pulse repetition time of radar system is

(1) $1 \mu s$

- (2) 10 µs
- (3) 100 μs
- (4) $1000 \mu s$

180. What radar measurement of an object is referred to true north

- (1) Height
- (2) Surface angle
- (3) Vertical angle
- (4) One-way distance

181. 5	Suria	ace search radar normal	iy sca	ans	aegrees of	i azımutn		
(1)	30°	(2)	180°	(3)	90°	(4)	360°
182. I	Dop	pler frequency is given b	у					
(1)	$\mathbf{f}_{d} = 2 v_{r}/\lambda$	(2)	$f_d = 2 \lambda/v_r$	(3)	$f_d = v_r/\lambda$	(4)	$f_d = \lambda/v_r$
V	whe	re $v_{\rm r}$: radial speed of tar	get, 7	l: waveleng	th of transmi	tted energy		
183. V	Whi	ch of the following can b	oe us	ed to improv	ve range reso	lution in a Rad	lar	
(1)	Short duration pulse			(2)	long duration	pulse	
(3)	high frequency of opera	ting :	signal	(4)	increasing pu	lse width	
184. I	den	tify the Radar systems lo	ss an	nong the fol	lowing			
(1)	Beam shaped loss			(2)	Elastic loss		
(3)	Iron core magnetic loss	1		(4)	Copper loss		
185. <i>A</i>	Air I	Route Surveillance Rada	r land	ling systems	s provides			
(1)	track of all aircraft			(2)	keeps not saf	e and sep	parate
(3)	help in good weather co	onditi	ons	(4)	gives directio	n	
186. <i>A</i>	Abb	reviation of GCA is						
(1)	Ground-Controlled Ap	proa	ch	(2)	Ground-Cont	rolled Air	craft
(3)	Ground Cabinet Arterit	is		(4)	Ground Cargo	o Aircraft	
187. I	n a	Radar, which is used to	indic	ate the rang	e and direction	on of the target	t ?	
(1)	A – Scan			(2)	FM Altimeter		
(3)	PPI Indicator			(4)	Radar Altime	ter	
188. x	and	d y are Boolean variable	s if x	$y = 0, x \oplus y$	y is equal to			
(1)	x + y	(2)	$\overline{x} + \overline{y}$	(3)	ху	(4)	$\overline{x}\overline{y}$

IS 2016 D 34 J

189. Which of the following is the remedy for blind speed problem

(1) change in Doppler frequency

(2) use of MTI

(3) use of Monopulse

(4) variation of PRF

190. A simple CW radar does not give range information because

- (1) it uses the principle of Doppler shift
- (2) continuous echo cannot be associated with any specific part of the transmitted wave
- (3) CW wave do not reflect from a target
- (4) multi echoes distort the information

191. Which of the following is true in case of the FM-CW Doppler radar?

- (1) it does not give the target velocity
- (2) it does give the target position
- (3) a duplexer is required at the radar
- (4) it gives the target range

192. Which of the following frequency is wrong

- (1) 15,750 Hz for horizontal sync and scanning
- (2) 60 Hz for vertical sync and scanning
- (3) 31,500 Hz for equalising pulses and serrations in the vertical sync pulses
- (4) 31,500 Hz for the vertical scanning frequency

193. Microwave links are generally preferred to coaxial cable for television transmission because

- (1) they have less overall phase distortion
- (2) they are cheaper
- (3) of their greater bandwidth
- (4) of their relative immunity to impulse noise

194. The output stage of a television transmitter is most likely to be a

(1) Plate-modulated class C amplifier

(2) Grid-modulated class C amplifier

(3) Screen-modulated class C amplifier

(4) Grid- modulated class A amplifier

IS 2016 D 35 J

195	95. Which of the following deflection system is used in monochrome picture tube?									
	(1)	Electrostatic	(2)	Electromagnetic	(3)	Dynamic	(4)	Magnetostatic		
196	. Nur	mber of lines per pictu	ire ac	cording to CCIR	-В					
	(1)	425	(2)	525	(3)	625	(4)	725		
197	. A cı	rystal-ringer circuit is use	ed for	the						
	(1)	Y video amplifier			(2)	AFPC on color of	scilla	tor		
	(3)	color demodulator			(4)	chroma BPA				
198	. The	color level control is in	the							
	(1)	demodulator	(2)	BPA	(3)	AFPC	(4)	D. G-Y amplifier		
199	. A co	omb filter is used to								
	(1)	cancel chroma crosstal	lk		(2)	separate white fr	om bl	ack		
	(3)	clip the sync from blan	king		(4)	separate alternati	ng fro	m direct current		
200	200. An AM radio receiver is to be operated in the frequency range 550 kHz – 1650 kHz, with an IF of 450 kHz. The ratio of maximum to minimum capacitance of the signal section required to achieve the above is									
	(1)	9:1	(2)	4.4:1	(3)	5:1	(4)	8:1		

IS 2016 D 36 J